Accuracy of pancreas


Accuracy of pancreas

Accurate pancreas segmentation has application in surgical planning, assessment of diabetes, and detection and analysis of pancreatic tumors. Factors that affect pancreas segmentation accuracy have not been previously reported. The purpose of this study is to identify technical and clinical factors that adversely affect the accuracy of pancreas segmentation on CT.

In this IRB and HIPAA compliant study, a deep convolutional neural network was used for pancreas segmentation in a publicly available archive of 82 portal-venous phase abdominal CT scans of 53 men and 29 women. The accuracies of the segmentations were evaluated by the Dice similarity coefficient (DSC). The DSC was then correlated with demographic and clinical data (age, gender, height, weight, body mass index), CT technical factors (image pixel size, slice thickness, presence or absence of oral contrast), and CT imaging findings (volume and attenuation of pancreas, visceral abdominal fat, and CT attenuation of the structures within a 5 mm neighborhood of the pancreas).

Increased visceral abdominal fat and accumulation of fat within or around the pancreas are major factors associated with more accurate segmentation of the pancreas. Potential applications of our findings include assessment of pancreas segmentation difficulty of a particular scan or dataset and identification of methods that work better for more challenging pancreas segmentations.

Media Contact

Editorial Assistant
Pancreatic Disorder and Therapy